
Microsoft Engage Mentorship Program 2020

Meeta Malviya
Fathima Zarin Faizal

Team: Batman and Robin
Mentor: Vinay Kotakonda

IIT Bombay

July 2020
URL: https://meeta14.github.io/pf mars/

GitHub link: https://github.com/Meeta14/pf mars

1

https://meeta14.github.io/pf_mars/
https://github.com/Meeta14/pf_mars/tree/master

Contents

1 Introduction 3

2 Instructions to use 3

3 Graph Traversal Algorithms 3
3.1 A* Search . 3
3.2 Conditions for heuristics . 5
3.3 Best First Search . 5
3.4 Dijkstra’s Algorithm . 6
3.5 Breadth-First Search . 6

4 Terrain 6

5 Other Options 7
5.1 Diagonal Neighbours . 7
5.2 Don’t Cross Corners . 7

6 Bidirectional 8

7 Number Of Destinations 8

8 Mazes 9

9 Scope for further modifications 9

10 References 9

2

1 Introduction

This project is our unique take on the “Navigate the Mars rover” project. We have
implemented a pathfinding visualizer website that finds the shortest path between
two points for the Mars Rover to take.

2 Instructions to use

• Select terrain from ‘Set Terrain’ panel and click within the white grid and drag
your mouse to draw obstacles/hills/valleys.

• Select number of destinations from the same panel.

• Drag the green node to set the start position.

• Drag the red node to set the end position.

• Choose an algorithm from the right-hand panel.

• Choose weights/ heuristic/ don’t cross corners options from the panel

• Click Start Search in the lower-right corner to start the animation.

3 Graph Traversal Algorithms

We have implemented the following graph traversal algorithms:-

• A* star

• Dijkstra’s

• Best First

• Breadth First

3.1 A* Search

A-star search is an algorithm which finds the most optimal path between two nodes.
It uses two properties and tries to minimize sum of those properties. // properties
are :- g(n) = the movement cost to move from the starting point to a given square
on the grid
h(n) = the estimated movement cost to move from that given square on the grid to
the final destination, called heuristic.
f(n) = g(n) + h(n)

3

Types of Heuristic

Different types of heuristics that we have implemented:-
The destination node is refereed as (a, b) where a represents destination node’s ’x’
coordinate and b represents destination node’s ’y’ coordinate.
The current node is refereed as (x, y) where a represents current node’s ’x’ coordi-
nate and b represents current node’s ’y’ coordinate.

Manhattan

h(x, y) = |(x− a)|+ |(y − b)|

Euclidean

h(x, y) =
√

(x− a)2 + (y − b)2

Diagonal

h(x, y) = Max(|(x− a)|, |(y − b)|)

Octile

h(x, y) = Max(|(x− a)|, |(y − b)|) + (
√

2− 1)×Min(|(x− a)|, |(y − b)|)

Pseudo code for A star search:-

1 // A* Search Algorithm

2 1. Initialize the open list

3

4 2. Initialize the closed list put the starting node on the open

list

5

6 3. while the open list is not empty

7 a) find the node with the least f on

8 the open list , call it "q"

9

10 b) pop q off the open list

11

12 c) generate q’s 8 successors and set their

13 parents to q

14

15 d) for each successor

16 i) if successor is the goal , stop search

17 successor.g = q.g + distance between

18 successor and q

19 successor.h = distance from goal to

20 successor (This can be done using many

21 ways , we will discuss three heuristics -

22 Manhattan , Diagonal and Euclidean

23 Heuristics)

24

25 successor.f = successor.g + successor.h

4

26

27 ii) if a node with the same position as

28 successor is in the OPEN list which has a

29 lower f than successor , skip this successor

30

31 iii) if a node with the same position as

32 successor is in the CLOSED list which has

33 a lower f than successor , skip this successor

34 otherwise , add the node to the open list

35 end (for loop)

36

37 e) push q on the closed list

38 end (while loop)

3.2 Conditions for heuristics

• At one extreme, if h(n) is 0, then only g(n) plays a role, and A* turns into
Dijkstra’s Algorithm, which is guaranteed to find a shortest path.

• If h(n) is always lower than (or equal to) the cost of moving from n to the
goal, then A* is guaranteed to find a shortest path. The lower h(n) is, the
more node A* expands, making it slower.

• If h(n) is exactly equal to the cost of moving from n to the goal, then A* will
only follow the best path and never expand anything else, making it very fast.
Although you can’t make this happen in all cases, you can make it exact in
some special cases. It’s nice to know that given perfect information, A* will
behave perfectly.

• If h(n) is sometimes greater than the cost of moving from n to the goal, then
A* is not guaranteed to find a shortest path, but it can run faster.

• At the other extreme, if h(n) is very high relative to g(n), then only h(n) plays
a role, and A* turns into Greedy Best-First-Search.

3.3 Best First Search

This algorithm is functionally same as A-star Search, but this algorithm finds path
based on least heuristic only.
Hence, we use A-star algorithm with a slight modification , which is, we change h(n)
to the following

h(n) = g(n) + weight× h(n)

Here weight is the user-input variable set to 1000 by default. The user can decide
how much to uplift heuristic in competition to g(n)

5

3.4 Dijkstra’s Algorithm

This algorithm is also functionally same as A-star Search, but this algorithm finds
path based on least g(n) only.
There isn’t any heuristic function involved in this search. We set h(n) = 0; henceforth
g(n) = f(n).

3.5 Breadth-First Search

BFS is a traversing algorithm where you should start traversing from a selected
node (source or starting node) and traverse the graph layerwise thus exploring the
neighbour nodes (nodes which are directly connected to source node). You must
then move towards the next-level neighbour nodes.
Pseudo code for A star search:-

1 BFS (G, s) // Where G is the graph and s is the

source node

2 let Q be queue.

3 Q.enqueue(s) // Inserting s in queue until all its neighbour

vertices are marked.

4

5 mark s as visited.

6 while (Q is not empty)

7 // Removing that vertex from queue ,whose neighbour will

be visited now

8 v = Q.dequeue()

9

10 // processing all the neighbours of v

11 for all neighbours w of v in Graph G

12 if w is not visited

13 Q.enqueue(w) // Stores w in Q

to further visit its neighbour

14 mark w as visited.

4 Terrain

The Martian surface is not smooth and includes different kinds geographies. The
tallest mountain in the Solar System(Maunea Kea) is on Mars. Hence we felt the
need to incorporate geological differences which will definitely play a huge role in
finding shortest path. We have included three kinds of terrain: hill, flat land and
valley. Hill is the hardest terrain to pass through, flat land second highest and valley
is the easiest terrain. We implemented this by putting weights for the edges between
nodes. We have allotted 15 units for hill, 5 units for flat land and 1 unit for valley.
If two adjacent nodes were of the same type of terrain, the above mentioned weights
are used for the edge in between. If the two adjacent nodes were of different kinds
of terrain, the absolute difference of the two weights is used.
Among the algorithms that we have implemented, A* star search and Dijkstra’s
work for weighted graphs and hence takes into account the effect of terrain, while
Breadth First Search and Best First Search do not work for terrain.

6

(a) Blue colour denotes valley (b) Brown colour denotes hill

5 Other Options

5.1 Diagonal Neighbours

In the grid, a node (denoted visually by a square) is connected to eight neighbours
(each direction).
Inside Grid.js there is a getNeighbour function that uses a hyper parameter which
is set true if we want to include all 8 neighbours and false if we only want to include
4 neighbours namely north, east, west, south.

(a) Allow diagonal (b) Don’t allow diagonal

5.2 Don’t Cross Corners

For this we need to maintain and check one more condition before appending into
neighbours list.
s0, s1, s2, s3 represents east, west, south, north direction respectively are initially
set to false and is set to true if the neighbour is included in the neighbours list.
d0, d1, d2, d3 represent north east, south east, south west and north west respec-
tively// code included to set this option in get neighbours:-

1 if(diagonal ==true){

2 if(dont_cross_corners){

3 d0 = s3 && s0;

4 d1 = s0 && s1;

5 d2 = s1 && s2;

6 d3 = s2 && s3;}

7 else{

8 d0 = s3 || s0;

9 d1 = s0 || s1;

10 d2 = s1 || s2;

11 d3 = s2 || s3;}

7

(a) Cross corners (b) Cross corners

6 Bidirectional

The algorithm’s bidirectional search is functionally same as it’s normal implemen-
tation just that it maintains two open list and searches for it’s respective end node
and ends search if the current node in same for both the open list.

Figure 4: Bidirectional

7 Number Of Destinations

We have incorporated multiple destinations in two ways:

• User gets to order destination nodes in the order they want the optimized path
to visit them

• Algorithm finds shortest path from source node that passes through each end
node exactly once

The first case is fairly simple, only involves finding paths using above mentioned
graph traversal algorithms in the correct order.
The second case is basically the travelling salesman problem. All paths between
the source node and each end node is found using the selected algorithm. Then
a dynamic programming algorithm called Bellman-Held-Kerp algorithm is applied.
The travelling salesman problem is an NP hard problem. The brute force method of
generating all permutations of nodes and finding shortest path would have complex-
ity O(n!) where n is the number of end nodes. The dynamic programming approach
that we have followed is slightly faster with complexity O(2n

√
n). The algorithm

involves finding subsets of all end nodes which has been achieved using bit masking.

8

Figure 5: Bellman-Herd-Karp algorithm
Source: Wikipedia

8 Mazes

We have incorporated mazes in our implementation. Mazes make it easier to set
pre-defined blocked nodes for the Martian terrain.
We have implemented two maze algorithms:-

• Depth First Search

• Prim’s Algorithm

9 Scope for further modifications

• No custom UI, since we are a two member team, we focused more on adding
new features rather than making the UI look better

• The terrain options are not customizable, the user cannot set his own
weights for the terrain

• Terrain options not realistic enough, same weight is given to ascending
a hill and descending a hill, gradients cannot be set for the terrain to show
gradual inclines or declines, Martian surface includes craters which have not
been included

10 References

• Breadth first search: https://www.hackerearth.com/practice/algorithms/graphs/breadth-
first-search/tutorial/

• Wikipedia

• www.geeksforgeeks.org

• Mazes:https://hurna.io/academy/algorithms/maze generator/index.html

9

https://www.hackerearth.com/practice/algorithms/graphs/breadth-first-search/tutorial/
https://www.hackerearth.com/practice/algorithms/graphs/breadth-first-search/tutorial/
www.geeksforgeeks.org
https://hurna.io/academy/algorithms/maze_generator/index.html

• Heuristics: http://theory.stanford.edu/∼amitp/GameProgramming/Heuristics.html

10

http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html

	Introduction
	Instructions to use
	Graph Traversal Algorithms
	A* Search
	Conditions for heuristics
	Best First Search
	Dijkstra's Algorithm
	Breadth-First Search

	Terrain
	Other Options
	Diagonal Neighbours
	Don't Cross Corners

	Bidirectional
	Number Of Destinations
	Mazes
	Scope for further modifications
	References

